Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jie-Qiong Huang ${ }^{\text {a }}$ and Zhi-Feng Lu ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Department of Basic Course, Suzhou Polytechnical Institute of Agriculture, Suzhou 215008, People's Republic of China, and
${ }^{\mathbf{b}}$ School of Chemistry \& Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: Ivzhifeng@nju.org.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.046$
$w R$ factor $=0.110$
Data-to-parameter ratio $=8.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3-Phenyl-2-(2,4,5-tricyanophenylmethyl)$1 H$-indene

In the title compound, $\mathrm{C}_{25} \mathrm{H}_{15} \mathrm{~N}_{3}$, the indene unit is essentially planar and there are intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in the crystal structure.

Comment

Photo-induced electron-transfer (PET) reactions of cyanoarenes with alkenes have attracted much research interest in recent years (Mella et al., 1998; Zhang et al., 2006). 1,2,4,5Tetracyanobenzene (TCNB) is the strongest electron acceptor of all cyanoarenes (Mattes \& Farid, 1982). In our ongoing research work on PET reactions, we have found that the PET reaction between TCNB and an excess amount of 1-phenyl-1,2,3,4-tetrahydronaphthalene in a polar solvent (acetonitrile) afforded the title compound, (I), as one of the products. As a part of this study, we have undertaken an X-ray crystallographic analysis of (I) in order to elucidate its conformation and configuration.

(I)

The bond lengths and angles in (I) (Table 1) are in good agreement with expected values, except for the $\mathrm{C}_{\mathrm{ar}}-\mathrm{C}(\equiv \mathrm{N})$ bond lengths $[1.435$ (5) -1.439 (5) \AA], which are slightly longer than the typical Csp-Csp ${ }^{2}$ bond distance (Allen et al., 1987). These $\mathrm{C}_{\mathrm{ar}}-\mathrm{C}_{\mathrm{CN}}$ bond lengths are comparable with those observed in the related compounds 4-phenyl-1-(2,4,5-tricyanophenyl)-1,2,3,4-tetrahydronaphthalene [1.442 (4)1.446 (4) Å; Zhang et al., 2002], 5-(1,4-dimethyl-4-phenyl-1,2,3,4-tetrahydro-1-naphthyl)-1,2,4-benzenetricarbonitrile [1.440 (4)-1.446 (4) Å; Usman et al., 2002] and 5-benzyl-benzene-1,2,4-tricarbonitrile [1.434 (3)-1.440 (3) Å; Wang et al., 2005]. In the title structure (Fig. 1), the indene unit is essentially planar. The phenyl and the tricyanophenyl rings form dihedral angles of 77.7 (4) and 85.6 (4) ${ }^{\circ}$, respectively, with the mean plane through the indene unit.

In the crystal structure, the molecular packing is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 2) involving the aromatic rings.

Received 10 July 2006 Accepted 13 July 2006

Experimental

The title compound, (I), was prepared by the photo-induced reaction of 1,2,4,5-tetracyanobenzene with 10 equivalents of 1 -phenyl-1,2,3,4tetrahydronaphthalene in an acetonitrile solution, irradiated by the light of wavelength longer than 300 nm for 60 h . It was isolated by column chromatography of the reaction mixture after evaporation of the solvent on silica gel. Single crystals of (I) were obtained by slow evaporation of a petroleum ether-acetone (1:1 v / v) solution (yield 7%).

Crystal data

```
\(\mathrm{C}_{25} \mathrm{H}_{15} \mathrm{~N}_{3}\)
\(M_{r}=357.40\)
Orthorhombic, \(P 2_{1} 2_{1} 2_{1}\)
\(a=7.7190\) (15) \(\AA\)
\(b=10.155\) (2) \(\AA\)
\(c=24.316(5) \AA\)
\(V=1906.0(7) \AA^{3}\)
```

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.245 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.45 \times 0.33 \times 0.30 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4
\quad diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
$\quad(X C A D 4 ;$ Harms \& Wocadlo,
$1995)$
$T_{\min }=0.951, T_{\max }=0.978$
4216 measured reflections

2160 independent reflections
1385 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.057$
$\theta_{\text {max }}=26.0^{\circ}$
3 standard reflections every 200 reflections intensity decay: none

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.110$
$S=1.00$
2160 reflections
254 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.02 P)^{2}\right.$
$+0.765 P$]
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

Table 1
Selected geometric parameters ($\left(\AA,^{\circ}\right)$.

$\mathrm{C} 8-\mathrm{C} 9$	$1.362(5)$	$\mathrm{C} 18-\mathrm{C} 23$	$1.437(5)$
$\mathrm{C} 9-\mathrm{C} 10$	$1.488(5)$	$\mathrm{C} 20-\mathrm{C} 24$	$1.435(5)$
$\mathrm{C} 16-\mathrm{C} 17$	$1.498(5)$	$\mathrm{C} 21-\mathrm{C} 25$	$1.439(5)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$103.8(3)$	$\mathrm{C} 17-\mathrm{C} 16-\mathrm{C} 8$	$114.0(3)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 19-\mathrm{H} 19 \cdots \mathrm{CgA}^{\mathrm{i}}$	0.93	2.99	$3.724(4)$	137

Symmetry code: (i) $-x+1, y-\frac{1}{2},-z+\frac{1}{2} . \operatorname{Cg}(\mathrm{A})$ denotes the centroid of the C1-C6 aromatic ring.

Figure 1
The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are shown at the 30% probability level.

The H atoms were included in the riding-model approximation, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 and $0.97 \AA$ for aromatic and methylene H atoms, respectively, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

This work was supported by the National Natural Science Foundation of China (NSFC, No. 20572044). We thank Professor Hua-Qin Wang of the Modern Analytical Center, Nanjing University, for technical assistance.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Enraf-Nonius. (1989). CAD-4 Software. Version 5. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Mattes, S. L. \& Farid, S. (1982). Acc. Chem. Res. 15, 80-86.
Mella, M., Fagnoni, M., Freccero, M., Fasani, E. \& Albini, A. (1998). Chem. Soc. Rev. 27, 81-89.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhang, M. \& Xu, J.-H. (2002). Acta Cryst. E58, o467-o468.

Wang, Y.-G., An, H.-Y., Lu, Z.-F., Wu, L. \& Xu, J.-H. (2005). Acta Cryst. E61, o3543-o3544.
Zhang, M., Lu, Z.-F., Liu, Y., Grampp, G., Hu, H.-W. \& Xu, J.-H. (2006). Tetrahedron, 62, 5663-5674.
Zhang, M., Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S. \& Xu, J.-H. (2002). Acta Cryst. E58, o132-o133.

[^0]: © 2006 International Union of Crystallography All rights reserved

